

Software Development Kit (SDK)

2

License Agreement

The products of PS-Tech B.V. come with a software license agreement. This
END USER LICENSE AGREEMENT (EULA) is shipped with each product.

In no event shall PS-Tech be held liable for any incidental, indirect, or
consequential damages whatsoever (including, without limitation, damages for
loss of business profits, business interruption, loss of business information, or
any other pecuniary loss) arising out of the use of or inability to use the
software or hardware.

Patent Liability

No patent liability is assumed with respect to the use of the products of PS-
Tech.

Errors in Manual

While every precaution has been taken in the preparation of this manual, PS-
Tech assumes no responsibility for errors or omissions.

3

Copyright Information

Copyright © 2015 by PS-Tech B.V., Amsterdam, the Netherlands

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, mechanical,
photocopying, recording or otherwise, without the prior written permission of
PS-Tech.

PS-Tech, the PS-Tech logo, PST Iris, PST Base and PST, are either registered
trademarks or trademarks of PS-Tech in the United States and/or other
countries.

Portions of the software included in this package contain licensed third-party
technology. With some of these, you also may have additional rights,
particularly to receive source code of these projects. The LDL and COLAMD
libraries of the SuiteSparse project are licensed under the GNU LGPL. You may
obtain a copy of the source code at
http://www.cise.ufl.edu/research/sparse/SuiteSparse/. The SSBA library is
licensed under the GNU LGPL. You may obtain a copy of the source code at
http://www.cs.unc.edu/~cmzach/opensource.html. This software is based in
part on the work of the FLTK project (http://www.fltk.otg). The DevIL library is
licensed under the GNU LGPL. You may obtain a copy of the source at
http://openil.sourceforge.net. The relevant third-party licenses are included in
the license.txt file in your PST installation.

PS-Tech B.V.
Falckstraat 53 hs, NL 1017VV Amsterdam
The Netherlands
Call: 858 764 4411 (USA)
Call: +31 (0)20 331 1214 (Global markets)
Fax : +31 (0)20 524 8797

info@ps-tech.com

http://www.ps-tech.com

http://www.ps-tech.com/

4

1 Software Development Kit

The PST Software Development Kit (SDK) provides an interface between the
PST tracking system and your own software applications.

Usage

To use the PST SDK in your own software, include the header file pstapi.h in
your project. The PST SDK library is dynamically linked with your program.
Please install the file pst.dll in your system directory or program directory and
link your project with pstdll.lib.

Note that the PST SDK communicates with the PST client software that is
included with your PST installation. If this application is not running you will
not receive tracker events in your application, even if the tracker unit itself is
running.

The PST SDK contains two data types to describe tracker data events:
PSTSensor and PSTPoint.

5

PSTSensor

Description

Sensor events are generated when an interaction device is visible and has been
identified by the PST.

Member Documentation

 name char[80] Name of the interaction device as listed in the
 PST client software.
 id int Identifier of the interaction device as listed in
 the PST client software.
 pose float[16] Row-major 4x4 transformation matrix
 describing the pose of the device in the
 coordinate system as defined by the PST
 client software (see the PST manual).
 The pose is defined as:





















15141312

111098

7654

3210

pppp

pppp

pppp

pppp

=





















1000

zzzz

yyyy

xxxx

TWVU

TWVU

TWVU

where ip represents the elements from the

pose, the vectors U, V, W represent the 3x3
rotation matrix, and T represents the translation
vector in meters.

 timestamp double Timestamp of the moment the data was
recorded since the start of the PST client
application (in seconds).

6

PSTPoint

Description

Point events are generated for single visible 3D points that have not been
identified as part of an interaction device.

Member Documentation

 id int Identifier of the 3D point. As a single 3D has no

features to distinguish it from another, points
are given an identifier based on their previous
motion. Note that there is no guarantee that
the identifier is consistent or correct between
sensor updates.

 pos float[3] The 3D position of the point in meters.
 timestamp double Timestamp of the moment the data was

recorded since the start of the PST client
application (in seconds).

7

Header pstapi.h

Description

Represents the interface to the PST client software.

Member Function Documentation

int pst_connect();
Connect to the PST.

 Return value int one on success, zero on failure

int pst_disconnect();
Disconnect from the PST.

 Return value int one on success, zero on failure

int pst_sensor_changed();
Check if any PST sensor has been updated since the last time it was read by the
SDK.

 Return value int one if new data is available, zero if no new data is
 available

int pst_sensor_changed_by_id(int id);
Check if the PST sensor indicated by id has been updated since the last time it
was read by the SDK.

 Parameters id The identifier of the device (0-99)
 Return value int one if new data is available, zero if no new data is
 available

8

int pst_get_sensor(struct PSTSensor* sensor);
Get the last PST sensor event if a new event is available.

 Parameters sensor A pointer to an allocated PSTSensor struct to
 receive a new event
 Return value int one if a new event is returned, zero if no new data
 is available

int pst_get_sensor_by_id(int id, struct PSTSensor* sensor);
Get the last PST sensor event with the given id if a new event is available.

 Parameters id The identifier of the device (0-99)
 sensor A pointer to an allocated PSTSensor struct to
 receive a new event

 Return value int one if a new event is returned, zero if no new data
 is available

int pst_point_changed();
Check if any PST point has been updated since the last time it was read by the
SDK.

 Return value int one if a new point is available, zero if no new
 point is available

int pst_get_point(struct PSTPoint* point);
Get the last PST point event if a new event is available.

 Parameters point A pointer to an allocated PSTPoint struct to
 receive a new event
 Return value int one if a new event is returned, zero if no new data
 is available

9

Example

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "pstapi.h"

int main (int ac, char **av)
{
 int i,j;
 struct PSTSensor sensor;

 // connect to the PST
 if (!pst_connect())
 exit (1);

 // infinite loop...
 while (1)
 {
 // loop over all new sensor events
 while (pst_get_sensor(&sensor))
 {
 // print out the name and id
 printf("Device: \"%s\", id: %d\n", sensor.name,

 sensor.id);

 // print the rotation matrix
 printf(" Orientation:\n");
 for (i=0; i<3; ++i)
 {
 printf(" ");
 for (j=0; j<3; ++j)
 printf("%.2f ", sensor.pose[i*4+j]);

 printf("\n");
 }

 // print the translation vector
 printf("\n Translation:\n ");
 for (i=0; i<3; ++i)
 printf("%.2f ", sensor.pose[i*4+3]);

 printf("\n\n");

10

 }
 }

 // disconnect from the PST
 pst_disconnect();

 return 0;
}

